
Design of an Optimal Hindi Keyboard for Convenient and Efficient Use

Priyendra S. Deshwal
Department of Computer Science and Engineering

Indian Institute of Technology, Kanpur
Kanpur PIN-208016, India

priyendra.deshwal@iitk.ac.in

Kalyanmoy Deb
Kanpur Genetic Algorithms Laboratory
Department of Mechanical Engineering
Indian Institute of Technology, Kanpur

Kanpur PIN-208016, India
deb@iitk.ac.in

KanGAL Report Number 2003004

Abstract- In this paper, we present a new design of the
Hindi 1 keyboard for convenient typing. We describe the
ergonomic criterion we have used to evaluate and com-
pare keyboards. This criterion is a mathematical for-
mulation of keyboard optimality in terms of the distri-
bution of the typing effort among the ten fingers, acces-
sibility of commonly used keys and various other fac-
tors. Measured against this criterion, our keyboard per-
forms more than twice as better than the standard Hindi
keyboard. We also describe a genetic algorithm based
optimization framework which we use to arrive at our
new keyboard design. Finally, we perform some sensitiv-
ity analysis on our optimization procedure and demon-
strate that our results confirm to intuitive expectations.

1 Optimization of Keyboards

The layout of the various characters on a keyboard has pro-
found impact on the efficiency of a typist. If frequently oc-
curring characters are not easily accessible, the rate of typ-
ing will go down. An ill-designed keyboard might place a
disproportionately high load on the weaker fingers of the
hand, leading to typing fatigue (even musculoskeletal in-
juries in the long term). Hence it is important while de-
signing a keyboard that a significant amount to thought be
devoted to determine the most optimal arrangement of char-
acters.

For English and other European language keyboards,
considerable investigation has gone into finding a suitable
arrangement of characters. The standard keyboard is the
QWERTY keyboard that everyone is familiar with. Also
there is the Dvorak keyboard which was proposed in the
1920’s and 30’s by August Dvorak and William Dealey.
This keyboard was a result of significant ergonomic re-
search and is known to outperform the standard QWERTY
keyboard on many factors (home row usage, for example).

Standard keyboard arrangements exist for Hindi too.
However, a detailed analysis of whether these are truly opti-

1Hindi, the third most commonly spoken language in the world after
Chinese and English, is used by more than 600 million people in India.

mal or better arrangements exist, has not been done. In this
paper, we present such an analysis. The aims of this paper
are:
• To analyze the optimality of the current standard

Hindi keyboard with respect to various arrangements
possible.

• To find (if it exists) a keyboard arrangement that is
better than the current Hindi keyboard in terms of typ-
ing convenience and efficiency.

2 A Summary of Related Research

Research has been done previously in the area of optimiz-
ing keyboard layouts using optimization techniques like
Genetic Algorithms [6, 2], Simulated Annealing [5], Ant
Colony Optimization [7] etc. Most of this research has been
in two broad directions:
• Normal Keyboards- These are traditional keyboards

where each character is mapped to a unique key on
the keyboard. The objective of optimization in such a
case is to arrange the characters on the keys in a man-
ner that is most efficient in terms of typing time and
effort. Most of the work done in this regard has been
for the Roman script. This work is an effort to ex-
tend these same methods to the Hindi language. For
further references related to this, refer to [5, 7].

• Ambiguous Keyboards- With the emergence of de-
vices like mobile phones, ambiguous keyboards are
gaining in popularity and relevance. These are key-
boards where multiple characters are mapped to a sin-
gle key. In such keyboards, either the user presses a
key multiple times to enter a character or an ambi-
guity resolution mechanism predicts which character
the user actually intended to type. Some approaches
discussed in [4, 3] assume that the system uses a sta-
tistical model (derived from commonly used English
words) to predict the most likely character that the
user wanted to type depending on the characters al-
ready entered. Others wait for the user to enter the en-
tire word and then search in a dictionary for all words

which can be formed by the key combinations that
the user pressed. In both these approaches, the essen-
tial problem is that of ambiguity reduction. So the
objective of the optimization in these problems is to
determine how to map different sets of characters to
the keys so that the resulting ambiguity is minimized.

In this paper, we focus on normal keyboards and henceforth,
unless stated otherwise, a keyboard should be taken to mean
a normal keyboard.

3 The Devanagari Script

Devanagari is the script in which Hindi is written. TheBu-
reau of Indian Standardshas standardized the character set
for the Devanagari script. The standard is named the Indian
Script Code for Information Interchange (ISCII). The orig-
inal document issued by the Govt. of India giving detailed
specification of the standard can be obtained from [1]. The
character set is shown in Figure 1. Note that the script pos-
sess some conceptual differences from the Roman script.
Some of these are summarized below:
• The concept ofmatras(character modifiers) has no

parallels in the Roman script. These can occur as
stand alone characters or be appended to other char-
acters to modify their sound. There are twelve such
matrasin all.

• Each character has ashiro rekha(a horizontal line) on
top of it.

• Character modifiers, basicallymatrasand other spe-
cial characters, can occur before, on top, below or af-
ter the main character that they modify.

4 Optimization Scheme

Before presenting our methodology, here are a few terms
and definitions that shall be used throughout the remainder
of this paper.

4.1 Terminology

• C: The complete set of Hindi characters.

• K: The complete set of assignable keys on a key-
board. This set does not contain keys likeRETURNor
SPACEas they are already mapped to standard char-
acters.

• M : The set of macros available on a keyboard. A
macro is a key combination on the keyboard that pro-
duces one character. For most keyboards, every keyk
is a macro and also [SHIFT+k] is a macro.

• Key Mapping: The key mapping of a keyboard is de-
fined as a mappingf : C → M which determines
which character is mapped to which macro.

• Monographs: Each single keystroke is referred to
as a monograph. Hence in the typing of the word
“the”, we have three monographs [t], [h], [e]. How-
ever, while typing “The” we have four monographs
[SHIFT], [t], [h], [e]. The relative frequency of oc-
currence of a monographmi with respect to all pos-
sible monographs is referred to asfmi .

• Digraphs: Pairs of keystrokes hit during typing are
called digraphs. For example in the typing of “the”
we have two digraphs as follows ([t], [h]) and ([h],
[e]). The relative frequency of occurrence of a di-
graphdi with respect to all possible digraphs is re-
ferred to asfdi .

4.2 Keyboard Representation

The design of the keyboards available in the market are
hardly suited for investigations regarding optimality. The
physical alignment of the keys is irregular; plus there are
some keys which cannot be moved (the space bar for exam-
ple). Also, there are aesthetic constraints like all numbers
on the keyboard should be arranged on adjacent keys. To ex-
pect the optimization procedure to automatically take these
into consideration is unreasonable. So we use a keyboard
abstraction proposed by [7] for our work. See Figure 2 to
get an idea of the relationship between an actual keyboard
and the abstract keyboard that we have used.

Once we use this abstraction, each key on the keyboard
can be mapped to a unique triplet as(hand, row, column).
Herehand is the hand that is used to hit the key while the
row and column denote the position on the abstract key-
board that the key appears. Similarly, each macro can be
mapped to a 4-tuple(modifier, hand, row, col). Here the
first componentmodifier tells whether the macro is for the
shift modified key or the normal key. Now to represent a
key mappingf , we use a four dimensional arraykeymap
as follows:

For any macrom = (modifier, hand, row, column),
and a characterc such that f(c) = m, we define,
keymap[modifier][hand][row][column] =c.
Here the ranges of the array indices are{normal, shift}
for modifier, {left, right} for hand, {0, . . . , 3} for
row and{0, . . . , 7} for column. Note that the number of
options in each of the four variables is an integer which can
be represented as2n.

Therefore, for any possible keyboard, this representation
allows us to store its key mapping as a 4-D array. Con-
versely, any such 4-D array will always correspond to some
valid key mapping. Hence using the abstraction discussed,
we have been able to establish a one-to-one correspondence
between keyboards and 4-D arrays. Now for optimization it
will suffice to search in the space of these 4-D arrays.

Figure 1: The ISCII character set for Indic scripts. The Hindi characters start from 161 onwards. Note that before 161, this
character map is identical to the ASCII character map (taken from [1])

(a)

(b)

Figure 2: (a) The standard Hindi keyboard, (b) The abstraction of the original keyboard. Each key shows the normal
character in the bottom cell and the shift-modified character in the upper cell. Note that some key positions are marked
with a hyphen to indicate that these cannot be occupied by any character. This is done for standard keys like RETURN or
number keys whose positions are fairly fixed on the keyboard. Also note that in order to compensate for the differences in
the length of the fingers and the thumb, the space key which is supposed to be hit by the thumb is brought to a separate
column between the two halves of the keyboard. However other keys on these columns are set to be unassignable.

Table 1: Ideal load distribution values used for the analysis.
The table lists coefficients for each row and column. To get
the value offdesiredmi for any key, multiply the coefficients
for the row and column taken from this table and multiply
by 0.5 so that the load should be shared equally between
each hand.

Ideal Load Distribution
S. No Row Column
1 17.39% 15.70%
2 19.57% 10.58%
3 47.83% 15.70%
4 15.21% 23.40%
5 18.27%
6 6.73%
7 5.45%
8 4.17%

4.3 Optimality of Keyboards

At a very macro level, an optimal keyboard for any script
should have the following qualities:
• Allow for minimum typing effort,

• Maximize typing speed,

• Reduce typing errors,

• Allow easy learning of the touch typing method.
Some ergonomic studies have been done regarding key-
boards. See [8] for an example. A concrete definition of the
optimality of a keyboard is provided by [7]. This definition
is motivated by the qualities listed above. Their definition is
discussed here and used as a standard metric in this work.

According to the method proposed, each keyboard is
evaluated on six criteria and the final score of the keyboard
is taken as a weighted sum of these six individual scores.
These six criteria are:

4.3.1 Load Distribution

Each finger of the hand has a certain strength. Note that
while typing, the total load on the fingers is constant. How-
ever, it would be highly desirable if this total load can be
distributed among the fingers in proportion of their relative
strengths. Therefore, the index finger which is the strongest
should share most of the total load. Along similar lines,
keys in the middle row are the most easily accessible and
therefore these should contain the most frequently occur-
ring characters. Hence, keys near the center of the keyboard
(which are hit by the index finger) and in the middle row
should share the maximum fraction of the total load. For-
mally stated, we can assign an ideal load distribution be-
tween all the monographs and the performance of any key-

Figure 3: A 3-D graph for thefdesiredmi values for the left
half of the keyboard.

board can be measured by calculating the deviation that the
actual load distribution for this keyboard has with the ideal
distribution. Hence, letfmi be the observed relative fre-
quency of a monographmi having ideal relative frequency
fdesiredmi and letΞmi be the set of all monographs. So on this
index the performance of the keyboard is measured as:

v1 =
∑

miεΞm1

(fmi − fdesiredmi)2

The values used forfdesiredmi are given in Table 12. These
values for the left half of the keyboard are also shown graph-
ically in Figure 3. To interpret the values given in Table 1,
consider a typical monographm = (hand, row, column),
then the value forfdesiredm can be obtained by multiply-
ing the respective fractions given in Table 1 forrow and
column and then multiplying by a factor of0.5 so that
the total load is divided equally between the left and right
hands.

4.3.2 Modifier Overhead

Every time a modifier such as theSHIFT key has to be
pressed, it adds to the inefficiency of the keyboard. Hence,
the most commonly used characters should be assigned to
normal macros while the lesser used characters must be as-
signed to shift modified macros. The performance of the
keyboard on this index is measured by a factorv2 and is
calculated by dividing the total number of keys pressed by
the number of characters that were typed. Hence if the text
to be typed was “The”, the total number of characters is 3

2The keyboard in [7] used nine columns. Since we have used eight
columns, we redistribute the contribution of the ninth column to other eight
columns.

while the number of keys pressed is 4. Hence the modifier
overhead will be 1.33.

4.3.3 Hand Alternation

Fast and comfortable typing is assured if keys that are to be
struck consecutively are on opposite sides of the keyboard.
The reason is that this allows one hand to move to the next
key’s position while the other is in the process of hitting
the current key. In order to quantify this hand alternation
indicator, we add up the frequency of the digraphs which are
typed by using one hand only. The hand alternation index is
calculated as:

v3 =
∑
diεΞd3

fdi

whereΞd3 is the set of all digraphs which are typed using
one hand only.

4.3.4 Consecutive Usage of Same Finger

The same concept of hand alternation can be extended to
fingers as well. If consecutive keys are hit by the same fin-
ger, it might lead to inefficiency in typing. This index is
calculated by summing up the frequencies of all diagraphs
which require both keys to be hit by the same finger. How-
ever, instead of simply summing up the frequencies of these
diagraphs, these frequencies are first weighted by a distance
coefficient. The greater the distance between the two keys
of a diagraph, the more penalizing a consecutive usage. The
relevant setΞd4 is therefore the set of digraphs which are
typed using the same finger. Therefore,

v4 =
∑
diεΞd4

fdidist(di)

The distance coefficient is given by the Manhattan dis-
tance function:

dist(di) = |c2 − c1|+ |r2 − r1|

wherec2 andc1 are the respective columns of the two
keys of which the diagraph is made andr2 andr1 the corre-
sponding rows.

4.3.5 Big Steps by Fingers of the Same Hand

When the same hand is used for two consecutive hits, large
distances which require awkward hand posture lead to slow
and laborious typing. This happens for diagraphs whose
component keys have a vertical distance greater or equal to
one. The relevant setΞd5 is therefore the set of digraphs
which are typed using the same hand, but not the same fin-
ger and the vertical distance between the two keys is greater

than or equal to one row. A weight coefficient depending on
the two fingers used is assigned to each digraph. The index
is calculated as:

v5 =
∑
diεΞd5

κ(di)fdi

The values for the coefficientsκ(i, j) were taken from
[7] and are presented in Table 2.

Table 2: The values forκ used for computingv5(Taken from
[7])

Thumb Index Mid Ring Little
Thumb 0 0 0 0 0
Index 0 0 5 8 6
Mid 0 5 0 9 7
Ring 0 8 9 0 10
Little 0 6 7 10 0

4.3.6 Hit Direction

Ergonomic research has revealed that for digraphs typed us-
ing one hand only, the preferred hit direction is from the
little finger towards the thumb. This is the finger movement
that most people find natural.Ξd6 is therefore the set of all
digraphs which are produced by using one hand only and
whose hit direction is not the preferred one. This index is
calculated as:

v6 =
∑
diεΞd6

fdi

4.3.7 Overall Grade

A natural way to define a global grade from the six indices
vj(1 ≤ j ≤ 6) is to take a weighted sum. Each indicator
can be assigned weights based on their relative importance
and a single objective optimization can then be performed
on the resulting overall score. However, these indices have
different ranges and units and therefore cannot just be sim-
ply added. They are first divided by the corresponding in-
dices of a reference keyboard3 vj,ref (1 ≤ j ≤ 6). Once the
indicators are turned dimensionless they can be multiplied
by a relative weight coefficientγ(j) and added. The values
of weightsγ(j) are represented in Table 3.

Using these values, the final score of a keyboard can be
evaluated as:

V =
6∑
j=1

γ(j)
vj

vj,ref

3In actual practice, the reference keyboard used was the standard Hindi
keyboard.

Table 3: The values forγ(j) used for computing the overall
grade for a keyboard fromvj(1 ≤ j ≤ 6) (Taken from [7])

Relative Weights of the Various Factors
Index Relative Weight
Load Distribution 0.45
Modifier Overhead 0.5
Hand Alternation 1.0
Consecutive Usage of same finger0.8
Big Steps 0.7
Hit Direction 0.6

4.4 Optimization Details

With the keyboard abstraction presented in Section 4.2, op-
timization is essentially reduced to search in the space of
4-D arrays. A Steady-State Genetic Algorithm may be used
for this search with many variations for parameters like mu-
tation probability, population size etc. A typical combina-
tion of the parameters is provided below:
• Population Size - 500

• Number of generations - 2000

• Probability of Mutation - 0.1

• Probability of Crossover - 0.9

• Selection Operator - Tournament Selection

• Steady-State GA Overlap - 50% of the population is
inherited from the parent pool

4.5 Genetic Operators

We use the following selection, mutation and crossover op-
erators during the search.

4.5.1 Selection

Both the Roulette Wheel Selection and Tournament Selec-
tion can be used. In actual usage, performance with both
these selection operators was found to be comparable.

4.5.2 Mutation

Given our representation of the keyboard as a 4-D array,
mutation can be very intuitively defined as simply swapping
the values at two points in the array. On the keyboard, it
would translate to swapping the macros mapped for two of
the characters. Suppose the parent key mapping isf and
the characters randomly selected for swapping arec1 and
c2. Then the mutated mappingf ′ is given as follows:

f ′(c) =

 f(c) ,∀c 6= c1, c2
f(c2) , c = c1
f(c1) , c = c2

4.5.3 Crossover

Intuitively the crossover operator that we use, takes a part of
the keyboard from one of the parents and copies it verbatim
into the child. With this some of the characters are assigned
a macro in the child. For the remaining characters, the other
parent is consulted for a macro and the nearest available
free macro is then assigned to the character in the child.
Formally stated, given two parent key mappings(fp1 , fp2)
and a random partition ofC (the set of Hindi characters)
C = C1

⋃
C2, a child mappingfc is defined as:

fc(c) =
{
fp1(c) ,∀c ε C1

nearest(fp2(c)) ,∀c ε C2

Herenearest(m) for a macrom is defined as a macrom′

that is unassigned to any character and is as close tom as
possible on the actual keyboard. Note that thisnearest
function is required for this case because it is quite possi-
ble that the macrofp2(c) may already be assigned to some
other character while copying part of the mapping fromfp1 .

4.6 Subsequent Local Search

To ensure that there was no local minima in the vicinity of
the optima found by the genetic algorithm, a simple local
search procedure is implemented. Two kinds of local search
are used:

4.6.1 Repeated Mutations

Starting from the solutions obtained, the solutions are re-
peatedly mutated. This is equivalent to a local search be-
cause the mutation operator that we use ensures that a sin-
gle mutation will always produce a keyboard that will be
exactly similar to the original keyboard except at the points
which were swapped.

4.6.2 Swapping Shift-Modified and Actual Characters

After the above procedure, a different mode of local search
is conducted. For this we simply swap the normal and shift-
modified characters for each key one by one and evaluate
the resulting keyboard. If at any point the resulting key-
board comes out to be better, we restart this procedure from
the first key. This is done till an iteration comes about with-
out any swapping taking place. At this point, the keyboard
produced is reported to be an optimal solution.

5 Implementation Details

• GA Framework: The entire code is written in C++
using the GALib library developed at MIT. This is
an excellent open source implementation of many
common Genetic Algorithms and is available for free

download from:
http://lancet.mit.edu/galib-2.4/ .

• Test Data: The evaluation function that we use as-
sumes that we know the relative frequencies of each
monograph and diagraph. Since these frequencies
cannot be estimated for general Hindi text, we sim-
ulate the typing of a large body of Hindi text (15 MB
of text in ISCII format) taken from various sources
on the Internet and compute the monograph and dia-
graph frequencies for the same.

6 Results

We present our results for a number of scenarios. These
include experiments with selection operators like Roulette
Wheel selection, Tournament selection etc. Also we vary
parameters like population size and all the various probabil-
ity parameters to get an idea of how the solutions behave
under different parameter values. The results we obtained
are summarized below:
• See Figure 4 for the best keyboard design that we

were able to evolve.

• See Table 4 for a summary of the results of various
experiments with parameter values.

• Our keyboard has a much better score (1.848) than the
current standard keyboard (4.05). Note that on our
criteria of comparing keyboards, a better keyboard
has a smaller score value. Therefore, our keyboard
outperforms the standard Hindi keyboard by more
than a factor of two.

• In the course of our experiments with various param-
eters, we observed that the final solutions obtained al-
ways had one peculiar property. In all of them a size-
able majority of the vowels were always clustered on
one particular side of the keyboard. Our explanation
for this hinges on the fact that in normal words sounds
and vowel sounds generally alternate. This is to say
that all elementary consonant sounds are followed by
a vowel sound. Now given the high number of vowels
in the Hindi language and the high weight given to the
hand alternation index, it follows naturally that all the
vowels should arranged on one side of the keyboard
while the commonly used consonants likeka, na etc
should occupy the other side.

7 Sensitivity Analysis

Throughout this work we have used a number of parame-
ters. Although we have tried our best to use standard values,
the values of these parameters can still be debated upon. In
order to convince the reader that our optimization method

Table 4: A summary of the results obtained as part of our
experiments. Note that with higher population sizes, the
generations taken for convergence decreases considerably
even though the ultimate scores obtained are more or less
comparable for all population sizes

Roulette-Wheel Selection
Scenario Keyboard score
(# genomes, # generations)
(50, 2000) 2.008
(250, 390) 2.007
(250, 2000) 1.937
(500, 256) 2.008
(500, 284) 1.942
(500, 2000) 1.848
Tournament Selection
Scenario Keyboard score
(# genomes, # generations)
(50, 2000) 2.090
(250, 390) 1.972
(250, 2000) 1.903
(500, 256) 2.060
(500, 284) 2.050
(500, 2000) 1.974

does not depend critically on the particular parameter val-
ues we have chosen, we present sensitivity analysis showing
how our solutions vary when we change the weights that we
have assigned to the different indices on which we evaluate
our keyboards.

7.1 Introduce Right-Left Asymmetry

In our earlier analysis, left and right hands were both given
weights of 0.5 each. Our first intuition was to change this
to see how the solutions change. The expectation was that
all the commonly used characters should move over to the
side which was given higher preference. So we used weight
values (0.7, 0.3) with higher preference being given to the
right hand. When the optimizations were carried out using
these, the solutions did actually reflect what we expected.
In order to evaluate whether the right side was indeed being
given more preference, we compared the key-hits on corre-
sponding keys on both sides of the keyboard. Taking the
home row as an example, see Table 5 for a comparison of
the key-hits on different sides of the keyboard.

7.2 Large Weight to Modifier Overhead

In this case, we gave modifier overhead an unnaturally large
value. Our expectation was that by doing this we should be
able to ensure the following two things:

Figure 4: The best keyboard that we were able to evolve. Parameters used were Roulette-Wheel selection, 500 population
size and 2000 generations. The score of this keyboard on our evaluation index was 1.848 whereas the standard Hindi
keyboard evaluates to 4.05. Keeping in mind that smaller scores represent better keyboards, this represents more than
two-fold improvement over the standard keyboard.

Table 5: The number of keystrokes on home-row keys in
different columns. Note that with higher preference being
given to the right side, all the right hand values are signifi-
cantly greater than the corresponding left hand values.

Left side Right side
Key at column 1 476,481 762,243
Key at column 2 491,876 705,620
Key at column 3 830,650 1,092,755
Key at column 4 511,078 724,854
Key at column 5 264,944 455,045

• All the commonly used characters should be assigned
to normal and not shift modified keys. Moreover,
the final keyboard should have all normal macros as-
signed to some character i.e. all the unoccupied slots
on the keyboard should be from the set of shift modi-
fied macros.

• Number of shift-keystrokes for typing any text should
be reduced.

So we set all other weights to 0.3 and modifier overhead
was set at 2.5. Upon running the optimizing procedure with
these weights, both the expectations were achieved. The fi-
nal keyboard did indeed have no empty slots in the place of
normal keys. In terms of the number of times theSHIFT
keys were pressed while typing our simulation text, for nor-
mal keyboards this number was 2,474,006. For the key-
boards evolved after making these changes to the weights,
this number fell to 1,175,413 indicating that the shift key
was used less than half as frequently.

7.3 Large Weight to Hand Alternation

In this trial, we gave a large value to the hand alternation in-
dex. The weights were 0.3 for all the other indices and 2.5
for hand alternation. The expected result was that the char-
acters should distribute themselves in such a way that the
most commonly used digraphs consist of keys from oppo-
site sides of the keyboard. In order to see the effect of these
changes, we ran the optimization procedure using two sets
of weights: one is already given above, and for the second
we gave equal weights to all the indices. We determined the
100 most common digraphs for both these keyboards. These
are the key-pairs that are most commonly hit. Among these
for the case with equal weights, we got 12 digraphs among
the top 100 which were on the same side of the keyboard.
For the other case however, this number was just 4. Hence,
out of a total of 100 most common digraphs, only 4 were
such that they were typed by the same hand. This shows
that by giving a large value to the hand alternation, we were
indeed able to ensure that very rarely does the user need to
use the same hand consecutively.

8 Conclusions and Future Research

In this paper, we have presented a keyboard design for a
new Hindi keyboard that is better than the current standard
Hindi keyboard in terms of typing convenience. We make
such a confident claim because we have evaluated our de-
sign on a formal mathematical evaluation criterion as ex-
plained above and compared the results with that of the stan-
dard Hindi keyboard. Finally, we also performed a sensitiv-
ity analysis to provide convincing proof that our methods
do satisfy intuitive expectations. This work however, is far
from complete and we can at once identify a few directions

in which research could still be conducted.
• Right now, our method focusses on optimizing a

weighted sum of the six indices discussed in this pa-
per. Alternatively, one could do a multi-objective op-
timization in which all six indices (or a carefully cho-
sen subset of these) could serve as the objectives.

• The standard Hindi keyboard has pairs of similar
sounding characters mapped to the same key. The
consonantska andkha for example. Another exam-
ple would bega andgha. With such an arrangement,
it becomes very easy for a typist to remember the po-
sitions of the keys on the keyboard. However, such
a constraint is not modelled in our system. In gen-
eral, nowhere have we focussed on thelearnability
of a keyboard. Incorporating that into our keyboard
model and our evaluation function would be one of
the primary directions for extending this research.

• Currently we are using a very generic representation
scheme and also very generic mutation and crossover
operators. It is expected that use of specialized rep-
resentations and operators will definitely improve the
results that we have obtained so far.

• This work basically focusses on capturing the concept
of optimalityof a keyboard in mathematical terms and
tries to find a keyboard which is optimal in terms of
this mathematical criterion. However it must be obvi-
ous, that no amount of mathematical jugglery can ac-
tually replace real human testing of keyboards. Since
the keyboards are to be used finally by humans, only
they can truly evaluate and decide which one is better.
Actual testing by humans should be the next logical
step for this research.

Bibliography

[1] Bureau of Indian Standards, Manak Bhavan, 9 Bahadur
Shah Zafar Marg, New Delhi PIN 110002, India.Indian
Script Code for Information Interchange - ISCII, 1991.

[2] David E. Glover. Solving a complex keyboard configu-
ration problem through generalized adaptive search. In
Lawrence Davis, editor,Genetic Algorithms and Simu-
lated Annealing, pages 12–31, 1987.

[3] Gregory W. Lesher and Bryan J. Moulton. A method
for optimizing single-finger keyboards. InProceedings
of the RESNA 2000 Annual Conference, pages 91–93,
2000.

[4] Gregory W. Lesher, Bryan J. Moulton, and D. Jeffrey
Higginbotham. Optimal character arrangements for am-
biguous keyboards.IEEE Transactions on Rehabilita-
tion Engineering, 6(4):415–23, 1998.

[5] Lissa W. Light and Peter G. Anderson. Designing better
keyboards.AI Expert, page 20, September 1993.

[6] B. J. Oommen, J. S. Valveti, and J. R. Zgierski. Applica-
tion of genetic algorithms to the keyboard optimization
problem. Technical report, Carleton University, Ottawa,
Canada, 1989.

[7] Marc Oliver Wagner, Bernard Yannou, Steffen Kehl,
Dominique Feillet, and Jan Eggers. Ergonomic mod-
elling and optimization of the keyboard arrangement
with an ant colony optimization algorithm. Technical
report, Laboratoire Gnie Industriel, cole Centrale Paris,
France, 2001.

[8] Shumin Zhai, Alison Sue, and Johnny Accot. Move-
ment model, hits distribution and learning in virtual
keyboarding. InProceedings of the SIGCHI conference
on Human factors in computing systems, pages 17–24.
ACM Press, 2002.

